AVMA 146th Annual Convention, Seattle, WA
July 11-14, 2009
“Raw Milk Conundrum: The Interplay of Science, Policy and Free Choice”
“Advances in microbiological and molecular assays for assessing raw milk”

Robert Mandrell, Ph.D.
Research Leader, Produce Safety and Microbiology Research Unit
USDA, Agricultural Research Service, Western Regional Research Center
800 Buchanan Street, Albany, CA 94710
Raw Milk Conundrum
Summarized from “Marler Blog” (www.marlerblog.com)

• **Pros**
 – "Protective effect” against allergies, tooth decay, pathogens (anti-bacterial)
 – Complex microflora (“Hygiene hypothesis”); induced immunity
 – Nutritional and fertility advantages

• **Cons**
 – GI illness: sporadic and outbreak
 – Costs to public health sector, productivity, dairy industry
Raw milk outbreaks

 - 46 outbreaks
 - 1733 illnesses
 - *Campylobacter* (57%), *Salmonella* (26%), *E. coli* O157 (2%), *Staphylococci* (2%)
Chapter 6

Prevalence of *Campylobacter* in the Food and Water supply: Incidence, Outbreaks, Isolation and Detection

William G. Miller and Robert E. Mandrell

Source (# Cases)

- **Meat/Beef/Pork**: 128 cases, 24 outbreaks
- **Milk/Dairy**: 7,425 cases, 95 outbreaks
- **Miscellaneous**: 1,914 cases, 49 outbreaks
- **Poultry**: 799 cases, 45 outbreaks
- **Produce**: 1,024 cases, 21 outbreaks
- **Seafood/shellfish**: 171 cases, 8 outbreaks
- **Water**: 17,328 cases, 68 outbreaks
- **Unknown**: 2,390 cases

Total number of outbreaks: 599

Total number of outbreaks throughout (Source: 599)
May-2006, 2nd largest Campylobacter outbreak in US history? (CA prison dairy)

Milk, unpasteurized, 3500 cases, UK-1979

Milk, raw, 500 cases, Switzerland-1981

Milk, unpasteurized, 332 cases, UK-1987

Milk, unpasteurized, 35 cases, Switzerland-1987

Milk, unpasteurized, 110 cases, USA-1988

Milk, heat-treated, >1800 cases, USA-2004

Total 7,425

*Represents 2 outbreaks.
Minimal Infectious Dose (MID)

- Minimal Infectious Dose depends upon:
 - Virulence of the strain
 - Immune-status of the host and host specificity
 - Complexity of the contaminated sample (food) ingested with pathogen
 - Exposure does not always result in an illness

- **C. jejuni**
 - 500 cells in a single “volunteer” (Robinson, 1981)
 - ~500 cells in volunteers (Black *et al.*, 1988)

- **E. coli O157:H7**
 - 31 to 35 cells, children and adults (Teunis *et al.* 2004)

- Theoretically, milk provides an even distribution of MIDs
Surveillance and outbreaks

- Epidemiology is critical
- Microbiology
 - Isolation of pathogen from complex samples (milk)
 - Enrichment culture
 - ImmunoMagnetic separation (IMS)
 - Selective and/or chromogenic media
 - Subculture of suspect colonies
 - Test many (10-50 cfu) to increase chance of finding outbreak strain (“needle in the haystack”)
 - Genotyping to identify strains
 - Molecular identification without culture (PCR)
Molecular characterization of *Campylobacter jejuni* strains linked to recent milk-related outbreaks and surveillance of California Central Valley dairy environments

Michele Jay, William Miller, Emma Yee, Anna Bates, Paul Rossitto and Robert Mandrell
C. jejuni Outbreak 1

- Correctional facility with on-site dairy (‘Dairy A’)
- Onset dates of May 13–26, 2006
- 1,644 ill inmates/11 facilities
- Pasteurized milk from Dairy A only common food/beverage
- No Campylobacter isolated from milk
- Largest US milk-related Campylobacter outbreak; 2nd largest Campylobacter outbreak ever in US.
Farm Investigation

- Environmental samples were collected between Dec 2006 and Jan 2007
 - Cattle feces
 - Flush alley water
 - Bulk tank raw milk
 - Dairy lagoons
C. jejuni CFU on selective medium: the start of isolation

How many CFU should you pick to find the "needle in the haystack"?
Campylobacter sample collection

Farm Investigation
- Multiple colony picks
 - 6-12 suspect *Campylobacter* from each positive sample
 - 52 isolates confirmed *C. jejuni*
 - Major outer membrane protein (Cmp/MOMP) typing: identified multiple isolates as potential outbreak strain
 - Multilocus sequence typing (MLST) ST-21
MOMP typing (Cmp)

Outer Membrane

Hypervariable loops in OMP

Related strains will have identical DNA sequence for this gene
Methods

MOMP (cmp) typing

- *cmp* gene encodes the *Campylobacter* MOMP
- Sequence polymorphisms make *cmp* typing an epidemiological tool

- Sequence *cmp* gene of large number of environmental strains: identify potential “outbreak strains”
- Further characterize “outbreak strains”
 - PFGE (*Smal*, *KpnI*) and MLST
Sequence variation in hypervariable loops

<table>
<thead>
<tr>
<th>Strains</th>
<th>Amino acid sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>x77852</td>
<td>GSVKNGWDASLGGLYYGKCKASTVVIDQGNIGSLLAGEEIFYNTGSGELNGDFGRNIYFGTVTGGYTFNETVRVGAADFV</td>
</tr>
<tr>
<td>m36292</td>
<td>GSIENVWDASLGGLYYGKCKASTVVIDQGNIGSLLAGEEIFYNTGSGELNGDFGRNIYFGTVTGGYTFNETVRVGAADFV</td>
</tr>
<tr>
<td>s2b</td>
<td>GTVENVWDASLGGLYYGKCKTVLTITIEDQGNIGSLLAGEEIFYNTGSGELNGDFGRNIYFGTVTGGYTFNETVRVGAADFV</td>
</tr>
<tr>
<td>x7199</td>
<td>GTVEVNGWDASLGGLYYGKCKTVLTITIEDQGNIGSLLAGEEIFYNTGSGELNGDFGRNIYFGTVTGGYTFNETVRVGAADFV</td>
</tr>
<tr>
<td>x77136</td>
<td>GTKVKNGWDASLGGLYYGKCKTVLTITIEDQGNIGSLLAGEEIFYNTGSGELNGDFGRNIYFGTVTGGYTFNETVRVGAADFV</td>
</tr>
<tr>
<td>21190</td>
<td>GSVKENVWDASLGGLYYGKCKTVLTITIEDQGNIGSLLAGEEIFYNTGSGELNGDFGRNIYFGTVTGGYTFNETVRVGAADFV</td>
</tr>
<tr>
<td>33559</td>
<td>GAYEVNGWDASLGGLYYGKCKTVLTITIEDQGNIGSLLAGEEIFYNTGSGELNGDFGRNIYFGTVTGGYTFNETVRVGAADFV</td>
</tr>
</tbody>
</table>

β13
L7
β14
β15

N-terminus
C-terminus

Diversity (%)

HV1 HV2 HV3 SV1 HV4 SV2 HV5
Multilocus Sequence Typing (MLST)

- MLST for *Campylobacter* species developed by Dingle et al; JCM, 2001
- 7 housekeeping genes (*aspA, glnA, gltA, glyA, pgm, tkt, and uncA*), ~420 bp each = ~3000 bp total sequence for comparison
- Database: >7800 isolates, ~4000 profiles, time and source
Comparison of Cmp types among C. jejuni
ST-21 strains and other representative isolates

Cmp Typing
Test new genotyping methods in other suspected C. *jejuni* raw milk outbreaks
• *C. jejuni* Outbreak 2
 – 5 cases, Washington state
 – Dec, 2007
 – Linked epidemiologically to consumption of raw milk from “Dairy C”
 – MLST ST-806
• *C. jejuni* Outbreak 3
 - 8 cases, California
 - Onset dates of Nov 23 - Dec 5, 2007
 - All 8 patients reported drinking raw milk/raw chocolate colostrum from “Dairy B”
 - MLST ST-1244
 - PFGE pattern from Dairy B cattle fecal isolates indistinguishable from case-patient isolate
Conclusions

- Isolation of the outbreak strains from dairy environment provides evidence that the source of contamination for each outbreak was at the dairy
- **Cmp typing** provides rapid triaging
- DNA fingerprinting methods (**MLST**) provide higher resolution for screening environmental isolates
- **Cmp + MLST** typing = 8 loci; provides added discrimination
- Persistent and/or predominant strains may exist in the dairy environment
Outbreak 4:
Raw milk suspected, but no isolates available

Only molecular methods
• C. *jejuni* Outbreak 4
 (Karon et al, presented at 2009 ICEID, Atlanta, GA)
 – May-June, 2008
 – Raw milk, cow leasing program
 – 15 cases, California
 – No isolates were saved!
 – 1 patient with Guillain-Barré Syndrome (GBS)
 – 1 sample of 45 day old raw milk was available
 – Opportunity to test detection, limited genotyping and characterization methods
Analysis of milk samples

• Attempts to isolate *C. jejuni* failed
 – Tried enrichment, multiple media, atmospheres
• Milk: DNA purification using multiple kits
• PCR for MLST alleles
• PCR for genes in lipooligosaccharide (LOS) loci
A full aspA (aspartase) allele ("aspA67") was sequenced from PCR products from DNA isolated from raw milk sample

Phylogenetic tree of aspA sequence types

Provided by Bill Miller
The Gram-negative Envelope

- Major outer membrane protein
- O-antigens
- Porin trimer
- Lipopolysaccharide
- Brown's lipoprotein
- Peptido-glycan
- Protein

Gram-negative bacterial endotoxin (lipopolysaccharide, LPS)

O-specific polysaccharide chain
O-specific oligosaccharide subunit
n
Core glycolipid

From: www.bio.davidson.edu/total_membrane.gif
C. jejuni and Guillain-Barre Syndrome (GBS)

- Lipooligosaccharides (LOS) mimic mammalian gangliosides
- Mono-, Di-, Tri-,sialylated glycolipids: GM1a, GM1b, GM2, GD1a, GD1b, GD1c, GD3, etc.

- PCR mapping of LOS genes in DNA from Milk sample
PCR amplification and sequencing of *C. jejuni* LOS genes from total DNA recovered from milk samples

Amplification

PCR products for LOS genes *waaV*, *cstIII* and *orf18df*.

- Sequencing of *waaV*
 - Sample 1 – 500 bp 100% identical to a **Class C LOS** gene
 - Sample 2 – 500 bp 100% identical to a **Class D LOS** gene

Sequencing of cstIII- a sialyltransferase gene

- Sample 1 – 127 bases 99% identical to a **Class C LOS** gene
Conclusions

• Genetic evidence of *C. jejuni* in raw milk
 – Complete *aspA* sequence (>477 bp)
 – Two *waaV* sequences (500 bp each)
 – 127 bp for *cstIII* (sialyltransferase)

• Evidence of mixed strain sample: two different *waaV* genes (class C and D LOS)

• Patient serum antibodies bind best to LOS of a GBS *C. jejuni* strain
Rapid and Cost-effective Methods for the Detection of Foodborne Pathogens by DNA Microarrays

Photopolymerization: A non-enzymatic signal amplification system

Beatriz Quiñones, WRRC, PSMRU, Albany, CA
Cooperative Agreement with InDevR, Inc., Boulder, CO